Urea UV Fluid 5+1

ENZYMATIC IN VITRO TEST FOR THE QUANTITATIVE DETERMINATION OF UREA IN HUMAN SERUM, PLASMA AND URINE

CALIBRATION

| Urea UV Standard (50mg/dl) | 5ml | 88 13 60 |

QUALITY CONTROL

| Control Serum N | 6x5ml | 88 41 48B |
| Control Serum P | 6x5ml | 88 46 85B |

The control intervals and limits must be adapted to the individual laboratory and country-specific requirements. Values obtained should fall within established limits. Each laboratory should establish corrective measures to be taken if values fall outside the limits.

SUMMARY

The determination of urea is the most widely used test for the evaluation of kidney function. The test is frequently used in conjunction with the determination of creatinine for the differential diagnosis of prerenal hyperuremia (cardiac decompensation, water depletion increased protein catabolism), renal hyperuremia (glomerulonephritis, chronic nephritis, polycystic kidney, nephrosclerosis, tubular necrosis) and postrenal hyperuremia (obstructions of the urinary tract).

Urea is the final degradation product of protein and amino acid metabolism. In protein catabolism the proteins are broken down to amino acids and deaminated. The ammonia formed in this process is synthesized to urea in the liver. This is the most important catabolic pathway for eliminating excess nitrogen in the human body.

In 1914 Marshall introduced an assay based on the enzyme urease for determining urea in blood. The ammonia released from urea by urease was measured titrimetrically. Numerous other techniques have since been employed to measure the ammonia produced. These include Bertholot’s indophenol assay and the reaction of ammonia with Nessler’s reagent. Subsequent modifications have been published by Fawcett and Scott and by Chaney and Marbach. In 1995, Talke and Schubert published a totally enzymatic procedure for the determination of urea using the coupled urease/glutamate dehydrogenase (GLDH) enzyme system. The AXIOM UREA UV assay is based on the completely enzymatic method. It has been optimized for automatic analyzers that permit kinetic measurements.

TEST PRINCIPLE

Urea is hydrolysed in presence of urease to produce ammonia and CO2.

The ammonia produced combines with 2 – oxoglutarate and NADH in presence of GLDH to yield glutamate and NAD.

\[
\text{Urea + H}_2\text{O + 2H}^+ \xrightarrow{\text{Urease}} 2\text{NH}_4^+ + \text{CO}_2 \\
2\text{NH}_4^+ + 2\text{−Oxoglutarate + 2NADH} \xrightarrow{\text{GLDH}} \text{H}_2\text{O + 2NAD}^+ + \text{Glutamate}
\]

The decrease in absorbance due to the decrease of NADH concentration in unit time is proportional to the urea concentration.

NOTES

For in vitro diagnostic use.

Exercise the normal precautions required for handling all laboratory reagents.
LIMITATIONS - INTERFERENCE
Criterion: Recovery within ±10% of initial value.

Icterus: No significant interference up to an I index of 100 (approximate conjugated and unconjugated bilirubin concentration 100 mg/dl)

Hemolysis: No significant interference up to an H Index of 800 (approximate hemoglobin conc.: 800 mg/dl).

Lipemia (Intralipid): No significant interference up to an L index of 1200 (approximate triglycerides concentration: 2400 mg/dl).

There is poor correlation between turbidity and triglycerides concentration Ammonia produced on the cuvette during a GLDH or lactate UV determination interferes with the UREA/BUN assay. The urea/BUN must therefore not be installed on the analyzers together with reagents for the GLDH or lactate UV test. In urine endogenous ammonium ions interfere with the urea/BUN assay. Elevated concentrations can occur under acidic conditions (e.g. acidosis.) Great care must be taken to prevent ammonia contamination of the specimens and calibrators to be analyzed for urea/urea nitrogen.

MEASURING/REPORTABLE RANGE
Serum/plasma/urine
5 - 400 mg/dl (0.83 to 66.4 mmol/l) urea or 2 – 186 mg/dl urea nitrogen.

Determine samples with higher concentrations via the rerun function.

On instruments without rerun function, manually dilute samples with 0.9% NaCl or distilled water (e.g.1 + 2). Multiply the result by the appropriate dilution factor (e.g. 3).

Urine
Manually dilute samples with 0.9% NaCl or distilled water (e.g.1 + 19). Multiply the result by the appropriate dilution factor (e.g. 20).

EXPECTED VALUES
Serum/plasma
10 – 50 mg/dl (1.7 – 8.3 mmol/l) urea

Reference ranges for children are given in the brochure "Reference ranges for adults and children; preanalytical considerations" by Heil W. Koberstein R, Zawta B. (published by Boehringer Mannheim GmbH 1997).

Morning urine
847 – 2967 mg/dl (141 – 494 mmol/l)

24-hour urine
10 – 35 g/24h (170 – 580 mmol/24h), corresponding to 670 – 2300 mg/dl (110 – 390 mmol/l)

The expected values are influenced by daily take–up of proteins on relation to the body weight.

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference range. For diagnostic purposes the urea results should always be assayed in conjunction with the patient's medical history, clinical examinations and other findings.

ANALYTICAL SENSITIVITY (LOWER DETECTION LIMIT)
Detection limit: 5 mg/dl (0.83 mmol/l)

The lower detection limit represents the lowest measurable urea activity that can be distinguished from zero.

IMPRECISION
Reproducibility within run was determined using human samples and controls (n = 20). The following results were obtained:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean mg/dl</th>
<th>SD mg/dl</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>41.8</td>
<td>1.34</td>
<td>3.21</td>
</tr>
<tr>
<td>Sample 2</td>
<td>98.4</td>
<td>1.63</td>
<td>1.66</td>
</tr>
<tr>
<td>Sample 3</td>
<td>142</td>
<td>3.03</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Reproducibility was determined using human samples and controls between day (n = 20). The following results were obtained:
METHOD COMPARISON

A comparison of the mti-diagnostics Urea LS (y) with a commercial obtainable assay (x) gave the following result:

\[y = 0.993 \times + 0.389; \quad r = 0.998 \]

REAGENT CONCENTRATION

R1:
- TRIS buffer pH 7.8: 50 mmol/l
- GLDH: \(\geq 0.80 \text{ U/ml} \)
- Urease: \(\geq 12 \text{ U/ml} \)

R2:
- TRIS* buffer pH 9.6: 100 mmol/l
- 2-oxoglutarate: 8.3 mmol/l
- NADH: \(\geq 0.23 \text{ mmol/l} \)

*TRIS = Tris (hydroxymethyl)-aminomethane

PREPARATION AND STABILITY

R1: ready for use

R2: ready for use

The reagents are stable up to the expiry date on the label when stored at +2°C to +8°C.

Onboard stability:
- R1: 28 days
- R2: 28 days

SPECIMEN

Serum

Collect serum using standard sampling tubes.

Li-heparin, Na- heparin or K-EDTA plasma. Do not use ammonium heparin.

Stability:
- 7 days at +20°C to +25°C
- 7 days at +2°C to +8°C
- 1 year at −20°C

Urine

Collect urine without using preservatives.

Stability:
- 2 days at +20°C to +25°C
- 7 days at +2°C to +8°C
- 1 month at −20°C

- Urine samples are automatically diluted 1 + 19 with 0.9% NaCl or distilled water in the analyzer. The respective dilutions are taken into account in the calculation of results.
- Analyzers without automatically sample dilution
 Manually dilute urine samples with 0.9 % NaCl or distilled water (e.g. 1 + 10). Multiply the result by the appropriate dilution factor (e.g. 11).
 Centrifuge samples containing precipitate before performing the assay.

TESTING PROCEDURE

Materials provided

- Working solutions as described above

Additional materials required

- Calibrators and controls as indicated above
- 0.9% NaCl
Manual procedure:
Wavelength: Hg 334 nm (340nm)
Temperature: +25°C / +37°C
Cuvette: 1cm light path
Zero adjustment: against distilled water

Mix R1 and R2 in a ratio 5+1. This working reagent is stable: 14 days at +2°C to +8°C
3 days at +20°C to 25°C

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>10 µl</td>
<td>---</td>
</tr>
<tr>
<td>Sample</td>
<td>---</td>
<td>10 µl</td>
</tr>
<tr>
<td>Working reagent</td>
<td>1000 µl</td>
<td>1000 µl</td>
</tr>
</tbody>
</table>

Mix, and read A₁ after exactly 30 sec., read A₂ after additional 60 sec.

Calculation:
Determine the absorbance change as
ΔA sample = [A₁ (sample) – A₂ (sample)]
ΔA standard = [A₁ (standard)– A₂ (standard)]
and use this for calculation.

Calculation: by standard

\[
\frac{\Delta A_{\text{sample}}}{\Delta A_{\text{standard}}} \times \text{standard conc. (50mg/dl)} = \text{Urea conc. (mg/dl)}
\]

Calculation
Conversion into SI-units, relation between urea and urea-nitrogen:
mg/dl x 0.166 = mmol/l (urea)
mg/dl urea x 0.467 = mg/dl urea-nitrogen

Disposal
Please note the legal regulations.

Literature
2. Berthelot MPE Repert Chim Appl 1859:282

07/09 M/kd